Lightweight Pump Technology for Advanced Green Monopropellants, Phase I

Completed Technology Project (2013 - 2013)

Project Introduction

Systima will develop an innovative light weight self-pressurizing pump (SPP) technology to provide a constant-pressure supply of monopropellant to a spacecraft or tactical propulsion system. The SPP does not require a helium tank and higher operating pressure have a negligible impact on the system mass. Since the SPP has a lower weight than comparable propellant pressurization systems, it provides an opportunity for reducing launch costs, increasing spacecraft or tactical system payload capacity and significantly enhancing delta velocity/ ΔV . This technology can be used with hydrazine, HAN-based, or ADN-based propellants as there are no known limitations on the monopropellant that can be used in the system. The self-pressurizing lightweight pump for advanced monopropellants offers significant advantages in applications where a large ΔV is required, such as large spacecraft or in applications where high-pressure is needed, such as liquid ACS or DACS thrusters. The Phase I and Phase II SBIR will focus on development of the system for operation with the HAN-based monopropellant AF-M315E.

Primary U.S. Work Locations and Key Partners

Lightweight Pump Technology for Advanced Green Monopropellants

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Lightweight Pump Technology for Advanced Green Monopropellants, Phase I

Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
Systima Technologies,	Lead	Industry	Kirkland,
Inc.	Organization		Washington
Marshall Space Flight	Supporting	NASA	Huntsville,
Center(MSFC)	Organization	Center	Alabama

Primary U.S. Work Locations		
Alabama	Washington	

Project Transitions

0

May 2013: Project Start

November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138679)

Images

Project Image

Lightweight Pump Technology for Advanced Green Monopropellants (https://techport.nasa.gov/imag e/134894)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Systima Technologies, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Paul Luccio

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Lightweight Pump Technology for Advanced Green Monopropellants, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

